BU and University of Cambridge Collaboration on Traffic Prediction

Bournemouth University (BU) has collaborated with the University of Cambridge on network wide road traffic prediction. The work, led by Dr. Wei Koong Chai in BU, address the problem of traffic prediction on large-scale road networks and propose a novel deep learning model, Virtual Dynamic Graph Convolution Neural Network and Transformer with Gate and Attention mechanisms (VDGCNeT), to comprehensively extract complex, dynamic and hidden spatial dependencies of road networks for achieving high prediction accuracy. The work advocates the use of a virtual dynamic road graph that captures the dynamic and hidden spatial dependencies of road segments in real road networks instead of purely relying on the physical road connectivity.

The team designed a novel framework based on Graph Convolution Neural Network (GCN) and Transformer to analyse dynamic and hidden spatial–temporal features. The gate mechanism is utilised for concatenating learned spatial and temporal features from Spatial and Temporal Transformers, respectively, while the Attention-based Similarity is used to update dynamic road graph.

Two real-world traffic datasets from large-scale road networks with different properties are used for training and testing the model. VDGCNeT is pitted against nine other well-known models in the literature. The results demonstrate that the proposed VDGCNeT is capable of achieving highly accurate predictions – on average 96.77% and 91.68% accuracy on PEMS-BAY and METR-LA datasets respectively. Overall, our VDGCNeT performs the best when compared against other existing models.


G. Zheng, W. K. Chai, J. Zhang and V. Katos, “VDGCNeT: A novel network-wide Virtual Dynamic Graph Convolution Neural network and Transformer-based traffic prediction model,” Knowledge-based Systems, 110676, June 2023. DOI: https://doi.org/10.1016/j.knosys.2023.110676.